

**Ouster Introduction** 

# We build the eyes of autonomy

OUSTER

# Digital technology is the future of lidar

Digital lidar builds on the progress of analog products and solves for the barriers to improved performance and reduced cost.

- → Fully integrated, all-semiconductor design
- → High-resolution packed into the smallest form factor available today
- → Simplified digital architecture results in highly reliable and rugged lidar sensor
- → Affordable: lowest cost high-resolution lidar today, cost does not increase linearly with resolution





## RAW OUTPUT Ouster OS1-128

## Diverse customer base across many markets



# Products

## Ouster's product portfolio



# **OS0**

#### **ULTRA-WIDE VIEW**

32, 64, or 128 Channel 15 m range @ 10% reflectivity 45 m range @ 80% reflectivity 90° Vertical FoV

# **OS1**

#### MID-RANGE

32, 64, or 128 Channel 45 m range @ 10% reflectivity 100 m range @ 80% reflectivity 45° Vertical FoV **OS2** 

#### LONG-RANGE

32, 64, or 128 Channel 80 m range @ 10% reflectivity 210 m range @ 80% reflectivity 22.5° Vertical FoV

## Ultra-wide view OS0

**Product Highlights** 

- $\rightarrow$  90° Vertical Field of View
- $\rightarrow$  32, 64, or 128 channels of resolution
- $\rightarrow$  0 m minimum range
- $\rightarrow$  IP68, IP69K
- $\rightarrow$  Modular cap for custom integrations
- $\rightarrow$  Configurable horizontal FoV



"May Mobility wouldn't be where we are today as a company delivering autonomous mobility as a service without incorporating ultra-wide view lidar sensors."

> Tom Voorheis Director of Autonomy Engineering





Key Uses: Autonomous vehicles Commercial robotics Indoor mapping

Ж

## Mid-range OS1 (Gen 2)

**Product Highlights** 

- $\rightarrow$  45° Vertical Field of View
- $\rightarrow$  0 m minimum range
- $\rightarrow$  32, 64, or 128 channels of resolution
- $\rightarrow$  Modular cap for seamless integration
- $\rightarrow$  IP68, IP69K



"The OS1 lidar's range, size, durability, and highresolution are a perfect fit for [our autonomous delivery rover]."

#### Ali Kashani, VP of Special Projects





Key Uses: Autonomous driving Industrial automation Autonomous trucking Drone surveying navigation 3D mapping Security

## Long-range OS2

**Product Highlights** 

 $\rightarrow$  22.5° Vertical Field of View

 $\rightarrow$  200+ m range

- $\rightarrow$  32, 64, or 128 channels of resolution
- $\rightarrow$  0.18° vertical angular resolution
- $\rightarrow$  IP68, IP69K



"The Ouster OS2 is a solid solution that will augment [NVIDIA's] long-range perception offerings thanks to its resolution and reliability."

#### Gary Hicok Senior Vice President of Automotive Hardware and Systems



Key Uses: Autonomous vehicles Autonomous trucking Drone surveying and navigation

# Technology

## Ouster's digital lidar decouples cost from performance



# DIGITAL LIDAR High-Resolution





## DIGITAL LIDAR Rugged & Reliable

Ouster sensors are designed and built to withstand the most challenging environmental conditions:

- → Rated IP68 (immersion in > 1 m of water) and IP69K (withstands 2000 psi power washing)
- $\rightarrow$  Passed many mechanical shock & vibration tests, including:
  - $\rightarrow\,$  IEC 60068-2-27 (Amplitude: 100 g, Shape: 11 ms half-sine, 3 shocks x 6 directions)
  - → IEC 60068-2-29 (Amplitude: 40 g, Shape: 6 ms half-sine, 1,500 shocks x 6 directions)
  - → IEC 60068-2-64 (Amplitude: 3 G-rms, Shape: 10 1000 Hz, Mounting: sprung masses, 3 axes w/ 8 hr duration each)
- → Temperature rated from -40° C to +60° C for OS0 and OS1; rated from -20 °C to +64 °C for OS2
- → Currently undergoing full automotive-grade qualification and on track for ASIL B (D) and SIL-2 certification in 2022



Automotive-grade vibration testing





IP69K testing

Trip to the local car wash



# DIGITAL LIDAR

Ouster sensors are the most affordable highresolution lidar sensors available today:

- $\rightarrow$  Lowest price at all levels of resolution
- $\rightarrow$  Internal IMU included
- → Unique ambient data output enables lidaronly perception algorithms
- $\rightarrow$  Standard two-year warranty included
- $\rightarrow$  Price falls with volume purchases
- → Beam spacing options available to get improved perception out of fewer beams



# Perception and Localization

### DIGITAL LIDAR Perfect 2D:3D data spatial correspondence



Visualization of 2D to 3D data correspondence



Faster data labeling using 2D and 3D images simultaneously

#### DIGITAL LIDAR

## More powerful machine learning

#### Computational efficiency

→ Process data with >10x greater computational efficiency, leveraging compute designed for vectors (e.g., GPUs or specialized ASICs instead of CPUs<sup>1</sup>)

#### Faster labelling

→ Reduce data labelling time by up to 50% with unified 2D and 3D data

#### Algorithm compatibility

→ Apply existing 2D camera algorithms directly to native ambient, signal, and range data

2D algorithms applied directly onto structured lidar data (no preprocessing)



CNN-based semantic segmentation on combined ambient, signal, and depth images



Superpoint<sup>2</sup>: CNN-based key point extraction run on signal and depth images

# Ouster sensors are higher resolution, smaller, more reliable, and more affordable

#### **High Resolution**

→ Up to 128 vertical lines of resolution improves object detection

#### Rugged & Reliable

→ IP69K and IP68 rated; lower total cost of ownership (TCO)

#### Affordable

→ Ouster sensors offer the best value for performance available today

#### Small & Lightweight

→ Smallest and lightest sensor available on the market



# **OS2** Resolution Comparison



# **OS1** Resolution Comparison

|         | 5 meters | 10 meters | 20 meters | 30 meters | 40 meters | 50 meters | 60 meters |
|---------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| OS1-128 |          |           |           |           |           |           |           |
| 0S1-64  |          |           |           |           |           |           |           |
| OS1-32  |          |           |           |           |           |           |           |

\*Person is 1.8 m (6 ft) tall

# **OS0** Resolution Comparison

|         | 1 meter       | 5 meters | 10 meters | 15 meters  | 20 meters | 25 meters | 30 meters |
|---------|---------------|----------|-----------|------------|-----------|-----------|-----------|
|         | 6 July        |          |           |            |           |           |           |
| 000 100 |               |          |           | ********   |           |           |           |
| 050-128 |               |          |           |            |           | *****     |           |
|         | ALC: NO POINT |          | ***       |            |           |           |           |
|         | 1.            |          |           |            |           |           |           |
|         |               |          |           |            |           |           |           |
|         |               |          |           |            | (1000)    |           |           |
| 050-64  |               |          |           | ********** |           |           |           |
| 000 04  |               |          |           |            |           |           |           |
|         |               |          |           |            |           |           |           |
|         |               |          |           |            |           |           |           |
|         |               |          |           |            |           |           |           |
|         |               |          |           |            |           |           |           |
| OS0-32  |               |          |           |            |           |           |           |
|         |               |          |           |            |           |           |           |
|         |               |          |           |            |           |           |           |
|         |               |          |           |            |           |           |           |

\*Person is 1.8 m (6 ft) tall

## Point Cloud: Range Data

## Point Cloud: Signal Data

### Active Illumination

## Point Cloud: Ambient Data

Note the shadows, from perfectly aligned camera data

### Passive Illumination

# The Automotive opportunity for short and mid range is bigger than long range

Autonomous Car (Level 4-5)



| Lidar type    | Quantity on-vehicle |  |
|---------------|---------------------|--|
| Short-range   | 4                   |  |
| Mid-range     | 2                   |  |
| Long -range   | 1                   |  |
| Total Package | 7                   |  |

Autonomous Truck (Level 4-5)



| Lidar type  | Quantity on-vehicle | Range           | Field of View (H x V) |
|-------------|---------------------|-----------------|-----------------------|
| Mid-range   | 2                   | 0 - 50 meters   | 180° x 45°            |
| Long -range | 1                   | 5 - 200+ meters | 100° x 20°            |

# Industrial

#### Heavy Industry



| Lidar type  | Quantity on-vehicle | Range          | Field of View (H x V) |
|-------------|---------------------|----------------|-----------------------|
| Short-range | 3-4                 | 0 - 50 meters  | 180° x 90°            |
| Mid-range   | 1-2                 | 0 - 100 meters | 180° x 45°            |

#### **Factory Automation**



| Lidar type  | Quantity on-vehicle | Range          | Field of View (H x V) |
|-------------|---------------------|----------------|-----------------------|
| Short-range | 3-4                 | 0 - 50 meters  | 180° x 90°            |
| Mid-range   | 1-2                 | 0 - 100 meters | 360° x 45°            |

## Smart infrastructure

#### Intelligent Transportation Systems (ITS)



#### Security (Building and Perimeter)



| Lidar type  | Quantity per intersection | Range           | Field of View (H x V) |
|-------------|---------------------------|-----------------|-----------------------|
| Short-range | 2-4                       | 0 - 50 meters   | 360° x 90°            |
| Mid-range   | 2-3                       | 0 - 100 meters  | 360° x 45°            |
| Long -range | 1-2                       | 5 - 200+ meters | 360° x 20°            |

| Lidar type  | Quantity per 100 m <sup>2</sup> | Range           | Field of View (H x V) |
|-------------|---------------------------------|-----------------|-----------------------|
| Short-range | 4-10                            | 0 - 50 meters   | 360° x 90°            |
| Mid-range   | 2-4                             | 0 - 100 meters  | 360° x 45°            |
| Long -range | 1-2                             | 5 - 200+ meters | 360° x 20°            |

## **Robotics**

#### Drones



#### Last-mile Delivery Vehicles



| Lidar type | Quantity on-vehicle | Range          | Field of View (H x V) |
|------------|---------------------|----------------|-----------------------|
| Mid-range  | 1                   | 0 - 100 meters | 360° x 45°            |

| Lidar type  | Quantity on-vehicle | Range          | Field of View (H x V) |
|-------------|---------------------|----------------|-----------------------|
| Short-range | 3-4                 | 0 - 50 meters  | 180° x 90°            |
| Long-range  | 1                   | 1 - 200 meters | 360° x 20°            |

